Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice.

نویسندگان

  • Lise Sofie Haug Nissen-Meyer
  • Rune Jemtland
  • Vigdis T Gautvik
  • Mona E Pedersen
  • Rita Paro
  • Dario Fortunati
  • Dominique D Pierroz
  • Vincent A Stadelmann
  • Sjur Reppe
  • Finn P Reinholt
  • Andrea Del Fattore
  • Nadia Rucci
  • Anna Teti
  • Serge Ferrari
  • Kaare M Gautvik
چکیده

The transcription factor Sox4 is vital for fetal development, as Sox4(-/-) homozygotes die in utero. Sox4 mRNA is expressed in the early embryonic growth plate and is regulated by parathyroid hormone, but its function in bone modeling/remodeling is unknown. We report that Sox4(+/-) mice exhibit significantly lower bone mass (by dual-energy X-ray absorptiometry) from an early age, and fail to obtain the peak bone mass of wild-type (WT) animals. Microcomputed tomography (muCT), histomorphometry and biomechanical testing of Sox4(+/-) bones show reduced trabecular and cortical thickness, growth plate width, ultimate force and stiffness compared with WT. Bone formation rate (BFR) in 3-month-old Sox4(+/-) mice is 64% lower than in WT. Primary calvarial osteoblasts from Sox4(+/-) mice demonstrate markedly inhibited proliferation, differentiation and mineralization. In these cultures, osterix (Osx) and osteocalcin (OCN) mRNA expression was reduced, whereas Runx2 mRNA was unaffected. No functional defects were found in osteoclasts. Silencing of Sox4 by siRNA in WT osteoblasts replicated the defects observed in Sox4(+/-) cells. We demonstrate inhibited formation and altered microarchitecture of bone in Sox4(+/-) mice versus WT, without apparent defects in bone resorption. Our results implicate the transcription factor Sox4 in regulation of bone formation, by acting upstream of Osx and independent of Runx2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kif3a Deficiency Reverses the Skeletal Abnormalities in Pkd1 Deficient Mice by Restoring the Balance Between Osteogenesis and Adipogenesis

Pkd1 localizes to primary cilia in osteoblasts and osteocytes. Targeted deletion of Pkd1 in osteoblasts results in osteopenia and abnormalities in Runx2-mediated osteoblast development. Kif3a, an intraflagellar transport protein required for cilia function, is also expressed in osteoblasts. To assess the relationship between Pkd1 and primary cilia function on bone development, we crossed hetero...

متن کامل

Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence.

Bone marrow is the principal site for osteoclastogenesis and osteoblastogenesis; and an increase in the former has been linked with bone loss caused by acute loss of gonadal steroids. We have now used an established murine model of accelerated senescence and osteopenia (SAMP6) to test the hypothesis that reduced osteoblastogenesis is linked with decreased bone mass. At 1 mo of age, the number o...

متن کامل

Conditional Mesenchymal Disruption of Pkd1 Results in Osteopenia and Polycystic Kidney Disease

Conditional deletion of Pkd1 in osteoblasts using either Osteocalcin(Oc)-Cre or Dmp1-Cre results in defective osteoblast-mediated postnatal bone formation and osteopenia. Pkd1 is also expressed in undifferentiated mesenchyme that gives rise to the osteoblast lineage. To examine the effects of Pkd1 on prenatal osteoblast development, we crossed Pkd1(flox/flox) and Col1a1(3.6)-Cre mice, which has...

متن کامل

Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia.

We investigated whether Kif3a in osteoblasts has a direct role in regulating postnatal bone formation. We conditionally deleted Kif3a in osteoblasts by crossing osteocalcin (Oc; also known as Bglap)-Cre with Kif3a(flox/null) mice. Conditional Kif3a-null mice (Kif3a(Oc-cKO)) had a 75% reduction in Kif3a transcripts in bone and osteoblasts. Conditional deletion of Kif3a resulted in the reduction ...

متن کامل

Constitutive Activation of Gli2 Impairs Bone Formation in Postnatal Growing Mice

Indian hedgehog (Ihh) signaling is indispensable for osteoblast differentiation during endochondral bone development in the mouse embryo. We have previously shown that the Gli2 transcription activator critically mediates Ihh function in osteoblastogenesis. To explore the possibility that activation of Hedgehog (Hh) signaling may enhance bone formation, we generated mice that expressed a constit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2007